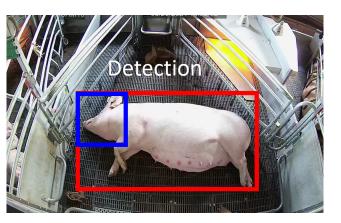
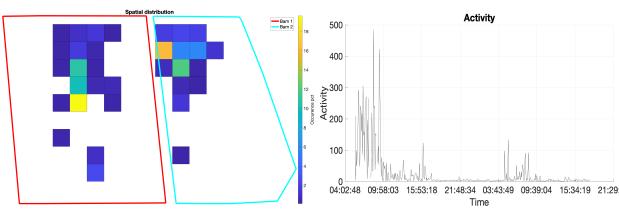
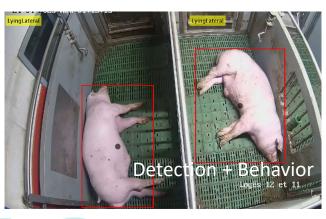
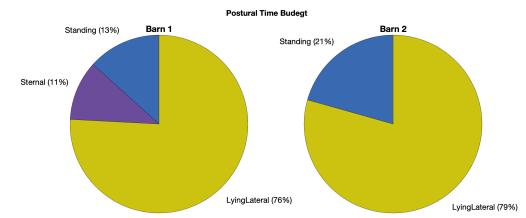
INRAO

> Estimating sow posture from computer vision; influence of the sampling rate


M./Bonneau¹, J.A. Vayssade¹, L. Canario²


¹ UR0143 ASSET, INRAE, 97170, Petit-Bourg, Guadeloupe, France.


² UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, 31326, Castanet, Tolosan, France.


> Introduction

- Monitoring behavior becomes an important question for managing and studying health and welfare.
- **Computer vision** offers valuable solutions:
 - No need to handle animal
 - No battery problem

INRA@

Monitoring Postural Time Budget

- Postural Time Budget (PTB):
 - Percentage of Time Budget spend in given postures.
- Interesting for comparing behavior between individuals
 - Comparison during stress (e.g. nutritional or temperature).
- Monitoring over the long term implies several constraints:
 - Large amount of data to store.
 - Computation time.
- Need to control the amount of data recorded:
 - Which monitoring frequency for a good estimation of the PTB?

> Experimental set-up

- Sows kept in crate.
- Recorded using CCTV cameras.
- Initial frame rate is 10 image/s (10 fps).
- Convolutional Neural Network for posture estimation (trained of thousands of images).

Animal id	Record day (duration)
1	1 (14h)
3	1 (14h)
3	1 (14h)
4	1 (14h), 10 (24h), 20 (24h)
5	1 (14h)
6	1 (8h), 21 (14h)
7	1 (14h)
8	10 (24h), 20 (24h)
9	1 (14h), 10 (24h), 20 (24h)
10	1 (14h)
11	1 (14h)
12	1 (14h)
13	1 (14h), 10 (24h), 20 (24h)
14	1 (14h), 10 (24h), 20 (24h)
15	1 (9h)

• 15 individuals recorded on different day after farrowing.

> Posture Estimation

- 8 postures considered:
 - Knee, Sitting, Standing, Sternal, UdderLeft and UdderRight.
- 16,245 pictures for training and 3,573 for validation.
- 1,842 pictures for testing.
- Use EfficientNet.

	Knee	51		1	1		
True Class	Sitting		85	1	11		
	Standing	19	6	400	1	1	
	Sternal	1	22	1	383	6	5
	UdderLeft				25	352	40
-	JdderRight				31	18	381

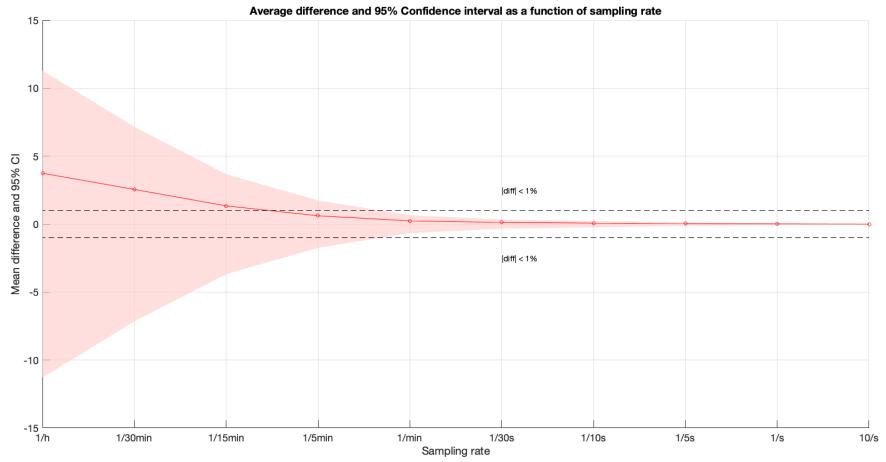
96.2%	3.8%
87.6%	12.4%
93.7%	6.3%
91.6%	8.4%
84.4%	15.6%
88.6%	11.4%

Average Precision: 90.36%

71.8%	75.2%	99.3%	84.7%	93.4%	89.4%
28.2%	24.8%	0.7%	15.3%	6.6%	10.6%
Knee	Sitting	Standing	Sternal Pre	UdderLeft dicted Class	UdderRight

Average Sensitivity: 85.64%

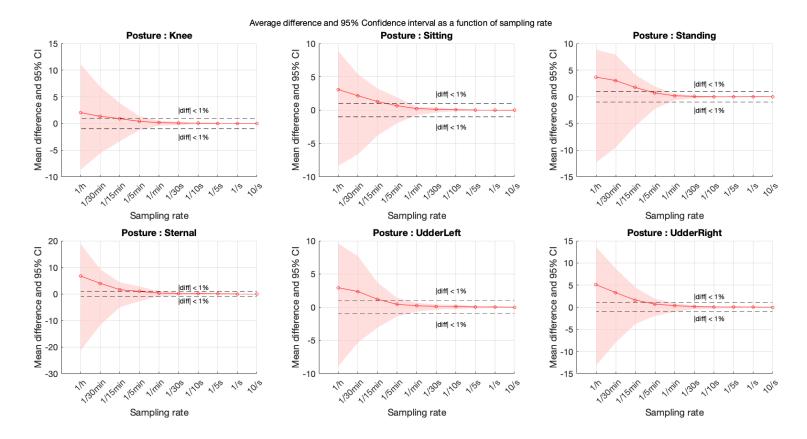
- 1. Posture estimation ran using the original 10 fps (10/s).
- 2. Down sampling at: 1/s, 1/5s, 1/10s, 1/30s, 1/min, 1/5min, 1/h.
- 3. Estimation of the PTB for each sampling rate.
- 4. Comparison of the PTB for each sampling rate:


Error =
$$\frac{1}{6} \sum_{p \in P} (x^p - \tilde{x}^p)$$
, P = {Knee, Sitting, Standing, Sternal, UdderLeft and UdderRight}

 x^p is the estimated percentage of time spend in posture p.

 \tilde{x}^p is the « true » estimated percentage of time spend in posture p (using 10 fps data).

5. Analysis of variance to test the influence of the animal id, recording day and sampling rate on the PTB.



► A sampling rate of **1/min** is, in average, sufficient to have a difference <1% with the original PTB, with 95% confidence.

► For **Sternal** and **UdderRight**, a sampling rate of **1/30s** is, in average, sufficient to have a difference <1% with the original PTB, with 95% confidence.

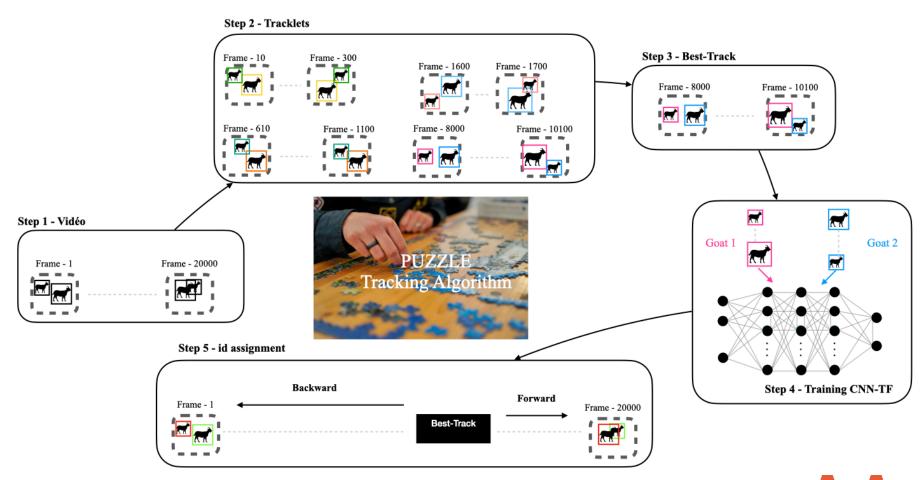
- Use monitoring of 15 sows during 430 hours on different days after farrowing.
- Compare the estimation of the postural time budget for a sampling rate of 1/s, 1/5s, 1/10s, 1/30s, 1/min, 1/5min, 1/h with the original 10/s sampling rate.
- The error depends on the posture.
- A sampling rate of 1/30s is sufficient to have < 1% error, with <5% risk.
- Difficult to know if the results could be generalize to other species/conditions.
- Important question when monitoring over the long term
 - Cost of storage.
 - Time for analysis and video transfert

9

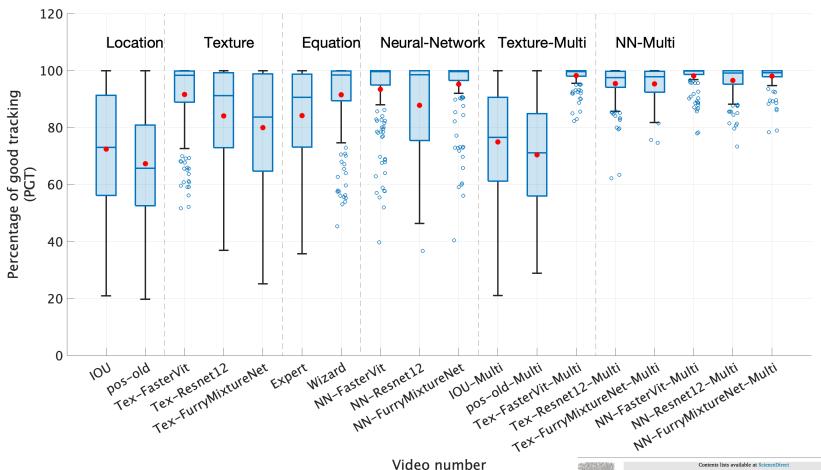
>

Tracking and behavior monitoring

https://gitlab.com/inra-urz/puzzle-livestock-tracking



Tracking and behavior monitoring


https://gitlab.com/inra-urz/puzzle-livestock-tracking

Tracking and behavior monitoring

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

Wizard: Unsupervised goats tracking algorithm

Jehan-Antoine Vayssade a, Xavier Godard b, Mathieu Bonneau a,

This work was founded by the F2E WhatSow Project

THANK YOU

13

